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The problem of a plane bubble rising in a 2-D tube is revisited using Birkhoff’s for-
mulation developed in 1957. The equations in this formulation have a one parameter
(Froude numbef) family of solutions which are divided into three regimes char-
acterized by distinct topologies at the apex. These equations are solved numerically
using a conventional series representation method and Newton’s iterations. This nu-
merical method fails for values &f in a range which contains the transition points. In
this paper, it is demonstrated through careful numerical computations how and why
this method fails. We also analyze the series and provide estimates of the transition
points. This strategy of estimating the transition points can be used for some problems
where the conventional series representation method fails because it does not ade-
guately account for changes in the nature of the singularity that takes place as these
transition points are approached in the parameter space. Furthermore, existence of
two new critical Froude numbers is demonstrated numerically. We further show that
the previous results on this problem have been incomplete by leaving out the char-
acterization of the topology at the apex of the bubbles for valu€siofthe regime
0.234< F < 0.3578. We also resolve this issue in this pap&s.2000 Academic Press

1. INTRODUCTION

The planar interface between a heavy and a light fluid under gravitational acceleratit
known to be an equilibrium configuration of fluid flow equations. This interface is knov
to be unstable (stable) if an accelerating force, such as gravity, is directed from the h
(light) fluid to the light (heavy) fluid. This instability is known as the Rayleigh—Taylor (RT
instability, and it plays an important role in many practical situations including inert
confinement fusion, astrophysical jets, two phase flows and fluidized bed. One of the n
possible asymptotic scenarios in the late stages of RT instability is the steady state moti
aperiodic array of bubbles [11, 27]. A useful model to capture some essential features o
scenario is an infinitely long plane bubble rising in a gravity field through an incompress
and inviscid fluid. The bubble profile is symmetric about the centerline of the channel
approaches the channel walls asymptotically at far downstream.
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This problem is mathematically characterized by two parameters: (i) the included ar
6, at the apex of the bubble; and (ii) the dimensionless sgeedy /./gh (Froude number)
whereU is the actual speed of the bubbtgis the gravity andh is the width of the two-
dimensional tube. Admissible valuesgpiccording to the theory are 1820, and O cor-
responding to smooth, pointed, and cusped bubbles, respectively [9, 13, 28, 30]. Belov
will encounter three critical values of Froude numbéis= 0.234 Fc =0.3578 F, =0.8.
The relevance of these speeds will be made clear.

Due to the awkward nonlinearity of the problem, a combination of asymptotic analy
and numerical computation [2—4, 10, 13, 28, 30] has been used in the past to addre:
question of admissible values of speed of these bubbles. Most of the early numerical w
have been based on conformal mapping and the series expansion method [4, 30]. |
similar calculations have been carried out using the real-space boundary integral app
[7, 19]. Most of the numerical results obtained by these methods have been found t
consistent with each other.

The theoretical and numerical works of Birkhoff and Carter [4] and the theoretical wi
of Garabedian [13] in the late fifties suggest that there is a continuum family of smo
bubbles rising at a speed &f < Fs, where F; refers to the speed of the fastest smoot
bubble. Approximate asymptotic analysis of Garabedian [13] puts the estimate of
speedF at an approximate value of 0.24. More recent computations [8, 28] which
conformal-mapping and the Fourier collocation method have provided numerical evide
to the fact that a bubble with a stagnation point at its tip can rise at any peeHc.
Since these bubbles could be smooth or pointed, Garabedian [14] conjectured that
bubbles for values oF > F; are probably pointed bubbles. Later numerical calculatior
of Vanden-Broeck [30] and Daripa [10] obtained a pointed bubble onky atF-. There
are no well-documented data regarding the nature of the topology at the apex for bul
in the approximate regimg; < F < Fc. It has been speculated that these bubbles may
well be legitimate pointed bubbles [14, 15]. Thus it appears that a careful study is reqt
to properly characterize solutions in the regirfg:< F < F¢. To this end, we would like
to mention that these observations are also consistent with numerical results obtained
the real space boundary integral approach [7, 19].

In this paper,

e We investigate the topology of the bubbles in the regpe: F < F¢c and charac-
terize these bubbles as smooth bubbles;

e we sketch atransition scenario from smooth to pointed and pointed to cusped but
and attribute certain numerical difficulties to the delicate nature of the singularity in
complex velocity at the tip and the transition phenomenology;

e one of the numerical observations made during our computations with a spe
series representation of the solution is the existence of a threshold phenomenon, i.e.,
emergence of oscillations in the Fourier spectra of the numerical solutions as soon a
Froude number exceeds a threshold valu&ofor smooth bubbles and decreases belo
a threshold value of, for cusped bubbles. The possible source of this phenomenor
discussed and relevance of these Froude numbers is indicated,;

e our research provides a general idea that is viable for some problems in wi
conventional series representation methods fail in computing approximate values o
transition points where topology changes occur.

e we provide some interesting results for cusped bubbles.
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The paper is laid out as follows. In Section 2, we briefly review the formulation
the problem. We discuss some relevant theoretical and computational issues in Secti
Issues of topological transition are addressed in Section 4. In Section 5 we provide s
validation criteria. Numerical results that are necessary for our purposes mentioned a
are presented in Section 6. A sketch of topological transition is suggested in Sectic
Finally we conclude and discuss some open problems in Section 8.

2. PRELIMINARIES

The formulation of the problem and the numerical approach have been discusse
Daripa [10] and are almost identical to Birkhoff and Carter [4] and Vanden-Broeck [2
Analysis to be presented in Section 3 and discussion of the results to be presented in
sections require that we present a very brief outline of the formulation and the numel
method here.

With respect to the reference frame attached to the bubble, the fluid upstream in a
of width h has a speetll downward. With appropriate normalization (speedUbyand
time by(g)), far upstream (i.ex — —o0) q=1, 6 =0, whereq is the speed and is the
flow direction. The apex of the bubble is locatedkat y = 0. It is useful to deal with this
problem in an auxiliary circle plangy| < 1, which is obtained by a conformal mapping of
the potential plane image of the flow in the physical plane. This maps the bubble sur
onto the upper semi-circle =€¢, « €[0, ], the walls on 1, 1) and the flow domain
onto the interior of the domain bounded by the upper semi-circle and the real axis.
image of the apex of the bubbleds=i and that of the tail of the bubble is= F1.

The complex functiomr =v —i6, wherev = Inq, is an analytic function o& within
the semi-circle and satisfies the symmetry condition) = t (—o) due to symmetry of the
bubble surface about the centerline of the tube (see Fig. 1). In the above, an overbar de
complex conjugacy. Moreover, sineé) is continuous and real on the real axis (siee0
onreal axis, the image of the walls), it also satisfies the condition =1 (o), in |o| < 1,
by Schwartz reflection principle. As discussed in detail by Birkhoff [2—4], the asympto
behavior ofr at the tailg = 1) and the ape =i) of the bubble are given by

e~[-InC(1l—- 02)]1/3, aso — F1, e~ (1+0%", aso — i, (2.1)
wherey =6; /7 > 0 with 6; as the included angle of the bubble at the apex.

An appropriate representationofo) in |o| < 1 which satisfies all the above conditions
is then given by

€@ = (1+06)"[-InC1 — 69)]¥3[=InC] V/3ed@:®) (2.2)
with
9(0: 6) =Y _ an()o™, (2.3)
n=1

where O< C < 0.5 and the Fourier coefficients,, are real. Since the values of these Fourie
coefficients depend on the valuegpfwe have explicitly shown this here using the notatiol
an(6;). Explicit dependence of these coefficientsioiis suppressed from this notation. A
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FIG.1. (a) The physical region: a bubble is rising upward in the fluid with speetihe diameter of the tube
is h; (b) The circle plane io| < 1.

derivative form of the Bernoulli’s equation on the bubble interface in this circle plane
given by [9]

T tanaez”g—; + T:—Z cost =0, O<a< % (2.4)

In the Fourier collocation method [28], expressionsifof, and their derivatives from
(2.2) are substituted in (2.4). This gives an equation contaiRing and an infinite number
of Fourier coefficients,. In order to solve it numerically, only a finite number of Fourie
coefficients are retained and Eq. (2.4) is applied &gui-spaced pointg; = (77 /2N)(l —
1/2), 1 =1,..., N. This gives a system o number of nonlinear equations. Jf is
prescribed, then the Fourier series is truncated &fterms and the equations are solved b
Newton’s iterations folN number of unknown Fourier coefficients.j)fis not prescribed,
then the Fourier series is truncated aftér 1 terms and the equations are solved b
Newton'’s iterations fory andN — 1 number of unknown Fourier coefficients. Numerica
convergence for a choice bf is achieved if the values of the unknowns do not change mc
than 108 between two successive Newton iterations. Once this is solved, valgesob
at mesh points are obtained from (2.2). Numerical solutions are obtained in this fashiol
an increasing sequence of valueshbto test for convergence of the unknown Fourier
coefficients and of the bubble profiles generated from integrating the equation

z, = é’, O<ac<m, (2.5)

wherez=x+1y.
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The series representation (2.2) is not unique. For example, consider the following w
is similar to the one used by Vanden-Broeck [28],

€@ =[-InC(1 - o)]¥][=InC] Y31 + h(o; 6)). (2.6)

This representation works well for finding bubbles with or without stagnation poi
(see [28]). Since the flow directiaghis discontinuous at a stagnation point, computed va
ues off using series representation (2.3) ffian (2.6) will have poor accuracy, in particular
near the stagnation point, due to Gibbs’ phenomenon. Therefore, conclusions abot
topology at the apex based on direct estimate of the apex anfflem these computed
values may be misleading.

The advantage of using (2.2) as opposed to using (2.6) lies in the ability to detect pres
or absence of pointed bubbles and smooth bubbles. We discuss this in Sections 3 anc

Remark 1. The end points (i.e., the tail and the tip of the bubble) cannot be usec
collocation points because the variable- In g in (2.4) diverges at these points.

Remark 2. Since the collocation points closest to the end points approach these pc
as N — oo and v diverges there, the numerical solutions can be reliable only up tc
certain maximum value oN. In fact, the scheme will fail for very large values bf
because the variableand entries in the derivative matrix required during Newton'’s iteratic
would be large and may cause quantities of interest during computation to underflo
overflow. Therefore convergence of the scheme cannot be tested in the strict sense und
refinement and such a conclusion has to be drawn from calculations for modest vaiies

3. THEORETICAL AND COMPUTATIONAL ISSUES

A numerical procedure for finding all possible solutions is to use the above scheme
a sequence of positive valués> 0 with allowable values o#; in (2.2). As discussed
in Daripa [9], these allowable values éf are 180, 120°, and 0. Various works in the
literature [4, 10, 13, 28, 30] suggest that there is only one vajjief 6; corresponding to
eachF. Numerical solutions with prescribed valuesgpfand F which are not consistent
(i.e., 6; #6,) may appear reasonable at times unless Fourier spectra of the solution:
carefully scrutinized as discussed below.

If computations usé; # 6,, then the functiorg(o; 6;) in (2.2) will diverge logarithmi-
cally at the stagnation point and the series (2.3) for this function will converge only
lo| <1, 0 # Fi. To be precise, we have from (2.2)

g(o:6) = g(o; 6a) + € In(L+ o?); lo] <1, (3.1)

wheree = (0, — 6;) /7. The Taylor series aj(o, 6;) willnow converge onlyfofo | <1, 0 #
Fi, because of the logarithmic branch pointati. The Taylor series

X qyn+1
In(1+02)zz( b o2, (3.2)

n=1 n

for the logarithmic term in (3.1) converges slowly, in fact very slowly, at points in tf
neighborhood ot = =i, ¥1 and also atb = 1. Because of this and the two previous
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remarks made in Section 2, it is possible to obtain numerical solutions with modest va
of N even if6; # 6, (see Daripa [9]). Inthat case, the numerically generated bubble will he
neither the correct apex angtg, due to Gibbs’ phenomenon nor the prescribed afgle

However, such spurious solutions can be detected by carefully analyzing the series
for g(o; 6;) given by (3.1). Since the spurious solutions are associated with the prese
of logarithmic singularities on the unit circle (see Eq. (3.1)), it would seem appropriate
identify such solutions by analyzing the pattern of signs in the series which are determ
by the singularities on the radius of convergence. For example, the pattern of signs il
series (3.2) is alternating due to the presence of singularitie$-at—1. When the pattern
of signs is alternating or fixed, Cauchy’s ratio test is the most useful in the graphical f
devised by Domb and Sykes [12] to determine the radius of convergence and, in s
instances, also the nature of the singularities. Van-Dyke [31] gives a lucid account \
many examples of how the pattern of signs in the series is determined by the singular

For some series, the final pattern of signs determined by the singularity may appear
only a few terms and for others, it may appear after many terms. In the latter case
singularity may not be detected easily unless enough terms in the series are available
is illustrated by

P(P-D 5, P(O-D(P-2 5,

5 5 e (3.3)

14+e)P =1+ pe +
wherep > 0 is not an integer. The larger the valuemfthe larger would be the number of
terms after which the pattern of signs determined by the singularity appears. An exal
which is more relevant to the current problem is illustrated by

S (_1)n+1 N
In(1l+x) = Z " (3.4)
n=1

where the pattern of signs determined by the singularity on the radius of convergence ap
right from the beginning of the series. On the other hand, the sgifgs(x"/nP), p> 1,
converges for allx| < 1. Now consider the series

oo

X" o 1n+1 & 1 _1n+1
S(X) =Z—p Z;( A Z(ﬁ—i—e(; )x”, (3.5)

n=1 n=1

which converges for-1 < x < 1 and has a singularity at= —1. Analysis of this series for
S(x) is more subtle because the pattern of signs determined by the singularity atl
may not appear soon enough unlessa (3.5) is not very small. For example, the pattert
of alternating signs that was present right from the beginning in the serieqfof k) in
(3.4) appears in the modified series (3.5) only aftge P11) number of terms which is very
large for small values af (remembelp > 1). However, this modified series (3.5) displays
pattern of oscillations starting from the first few terms precisely due to this same singule
on the circle of convergence.

Therefore, analysis of the series fp(o, 6;) is more subtle because the pattern of sigr
determined by the singularities in (3.1) may not appear early in the series for small va
of €. The spurious solutions, however, can be determined by the presence of oscillatio
the Fourier spectrum which signals the presence of singularities on the unit circle. Th
discussed in the next section in the context of the bubble problem.
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3.1. Analysis of the Series

Equations (3.1) and (3.2) imply that nonzero value®pf- 6,) should change the behav-
ior of the series (2.3) in a way that is consistent with the series (3.2). Itis evident from (¢
that this will leave a qualitative imprint on the Fourier spectra of the numerical solutio
To be precise, it follows from (2.3), (3.1), and (3.2) that the series coeffi@g@s an(6,)
are related by

(_1)n+l
an(6)) = an(6,) + € e n=1,...,00. (3.6)

Sinceg(o, 6,) isbounded and continuous on the unit circle, the most conservative estin
of the asymptotic behavior &, (0,) is given by

an(6y) = o(%) , asn — oo. 3.7)

Therefore Eq. (3.6) becomes

(_1)n+1
an(6y) ~ ¢ e asn — oo, (3.8)

indicating that amplitudes of the coefficierg6;) for a choice ob; £ 0, will alternate in
sign from odd to even and will slowly decay to zero as— oco. However, in practice the
series is truncated which has the following implications for our purposes here. If

an(6,) ~ Kn~P, asn — oo, (3.9

with K > 0 andp greater than but close to ong#éppears to be in the rang8Xk p < 1.4 for
most of the bubble solutions), then it follows from (3.6) tha®; ) for choices ob; # 6, will
decay with oscillations at large wavenumbers but may not alternate in sign (from odd to ¢
n) unlesse is not very small. In other words, persistent oscillations in the Fourier spec
asn — oo and slow decay rate according to Eg. (3.8) are the only important indicator:
spurious solutions. Moreover, Eqg. (3.6) suggests that such oscillations will appear in
entire Fourier spectrura, (6;) if a,(6;) decays monotonically with. It is perhaps useful
at this point to exemplify these observations.

It is well established [4, 10, 13, 28, 30] that a smooth bubble exists Wwhe®.23 and
a pointed bubble exists & = 0.3578. We show some results with these valuek of

Figure 2 shows some graphs taken from our computed solutioRs=e.23 and two
different values of;: 180°, 178. Figure 2a depicts surface profiles (only the left half) o
these numerically generated bubbles for these two valugsotlF = 0.23. These profiles
near the tails are indistinguishable and satisfy the asymptotic shape of these bubbles
the tails. Figure 2b depicts a magnified view of the regions around the tips of the bub
in Fig. 2a. It is reasonable to conclude from the thousandfold magnification of dxés
in this plot that these profiles agree exceedingly well. The Fourier modal amplitudes de
monotonically wher; = 180°. This is shown in Fig. 2c. Figure 2d shows the magnitude ¢
Fourier coefficients against the wavenumber whea 178 . The Fourier modal amplitudes
in this case are initially (up to fifth wavenumber) large compared to the Fourier coefficie
of the logarithmic term (see (3.2)) and, hence, the beginning part of the spectrum (up to
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FIG. 2. Effect of small variation in the apex angle with=0.23 andN =121: (a) Comparison of bubble
shapes; (b) magnified view of the bubble profiles near the tip; (c) Fourier coefficients, with80; (d) Fourier
coefficients withp, =178

wavenumber) does not have any oscillations. Thereafter, oscillations in the Fourier spec
are clearly visible in the plot because the transients introduced by the logarithmic bre
point now dominate the spectrum. Amplitude of these oscillations decreases with incree
wavenumber and is too small to be detected visually for high wavenumbers in this plo

Figure 3 shows results of numerical experimentdfes 0.35784 and two different values
of 6;: 120, 118. In Figs. 3c and 3d, smooth (monotonic) and oscillatory Fourier spec
are clearly recognizable, a clear indication that the oscillations arise begadises not
correspond to the correct value 220 he amplitude of oscillations in both the figures is
very mild because %{) =0.0349 is very small (see (3.8)). We have found that amplitud
of such oscillations in the Fourier spectrum increases yith- 6;| (i.e., the difference
between the correct tip angle and the specified valdewsed during computations) which
is consistent with our analysis above.

The analysis and calculations presented above lead us to surmise that persisten
oscillations in the Fourier spectrum as—+# oo may indicate that the value 6f used for
computation is not the correct apex angle of the bubble solution at that value of F. |
worth pointing out that this conclusion does not follow if one uses representéién
instead of(2.2).
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FIG. 3. Effectofvariationinthe apex angle with=0.35784 and\ = 121. (a) Comparison of bubble shapes;
(b) magnified view of the bubble profiles near the tip; (c) Fourier spectrum wherd20; (d) Fourier spectrum
whené, =118,

We measure the extent of such oscillations by monitoring the number of times the pilc
a, versus changes trend (from decrease to increase or decrease to increase) as a frac
the total number of Fourier coefficients used in the calculation. For lack of a better name
call this ratio the frequency of oscillations and use the abbreviation fos for it occasion:
We should note from our discussion so far in this section that the limitind\(as oo)
value of this ratio fos should be one if there indeed is a logarithmic singularity (howe
weak, i.e., regardless of how small thés in Eq. (3.1)) on the radius of convergence o
the series. Since presence of this singularity is synonymous with spurious solutions,
solutions can be determined by estimating the limiting values of fos. We will show bel
that this test is most useful in a graphical format to detect such spurious solutions.

4. TOPOLOGICAL TRANSITION AND SINGULARITIES

Itis notdifficultto see from (2.2) that behavior of the functigia ; 6;) in the neighborhood
of the tip has to be very complicated so that the complex velocity develops singularity of
right order as the topological transition (smooth to pointed and pointed to cusped bubl
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takes place at certain values Bf In particular, if there are smooth bubbles fer< F,
pointed bubbles foF, < F < F,, and cusped bubbles fér > F,, then it follows from (2.2)
that

1 2
g(o;m) — —§|n(1+62) +9<0; g) asF 1+ F, (4.1)
and
g(o;0) — —g In(1+ 02 + g(o; 2;1) asF | F,, (4.2)

whereg(o; ), g(o; 27 /3), andg(o; 0) are all bounded functions ifw| < 1. Below we
provide numerical results which indicate tHat= F, = Fc. This means that the function
g(o; 6;) has to develop logarithmic branch points of different order at the tip of the point
bubble depending on whether the pointed bubble is approached from below orFhove
Therefore, behavior of the functiag(o; 6;) has to be complicated for values Bfclose to

F andF, which are not adequately accounted for in (2.3).

5. DIAGNOSTIC TOOLS

5.1. Asymptotic Shape

The asymptotic shape of the bubble interface for lardewnstream is given by (see [28])

x = F2/2(1 - 2y)2. (5.1)

5.2. Tip Angle

It follows from Section 2 that the tip angtg is related to the flow variablesandq and
their derivatives at the tip by the relations

0(p=0"= —9—23 (5.2)
and
F2 6,
% = (@%)pslp0= COS<2>. (5.3)

Above we have used = 5 —a and, henceg =0 corresponds to the tip of the bubble.
Equation (5.2) is very obvious and can be viewed as the definition of the tip angle.
relation (5.3) arises from rewriting the interface condition (2.4) at the tip of the bubble
has been discussed in some detail in Daripa [9].

Use of the relations (5.2) and (5.3) is very limited here and, in fact, should not be u
for validation purposes because it is difficult to accurately compute the values on the
hand sides of these equations. It is worth mentioning here the numerical method doe
even use the apex as a collocation point. We have also verified our contention in kn
cases and found that these relations should not be used for purposes of validating wt
numerical solutions have the prescribed values of the apex angle or not. Instead, we s
use our main result given in the next section.
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5.3. Properties of the Fourier Spectrum

From our discussion in Section 3 and well known facts from the literature on Foul
series [32], we state the following two propositions in relation to numerical solutions w
representation (2.2).

PropPosITIONL. If 6; usedincomputationisthe correctangle atthettign g ~ o(1/n)
as n— oo.

ProPOSITION2. A sufficient condition for the emergence of oscillations in the Fourie
spectrum of a solution at a given F as-# o is that the value of; used for computation
be different from the correct tip-angts.

Below we refer to the following as our main result which follows from Proposition
Absence of persistent oscillations in the valuespalarge n as n— oo indicates that
the corresponding solution is the correct solution, i.e., the apex angle of the solution at
value of F must be the value @fused for computation.

Our main result can be used to validate that a numeral solution at a certain vdiue
has an apex angle equal to the valuéafised for computation. For this, it is necessary t
scrutinize the qualitative asymptotic behavior of the Fourier spectka-asco. As we will
see in Section 6, this is to be inferred here from observing the trend in the behavior o
Fourier spectra of the solutions obtained from using a sequence of modest vaNies of

6. NUMERICAL RESULTS

Numerical experiments have been carried out with several valués b to 251 for
various values oF in the regime G< F < 1. For brevity, numerical results will be presentec
for one or more of the following values ®f: 31, 121, and 251.

We have made some numerical observations which are discussed below. Some of th
cial inferences for values &¢f in a certain regime have to be drawn in the lidit> oo from
numerical results. Since numerics are rarely mathematical proofs, it would seem desil
to assemble some relevant numerical results in one place where these might be more
sible to other investigators for comparison with solutions obtained by other numerical
analytical methods. With this in mind, we have depicted some of our numerical results be

6.1. Pointed Bubbles

Numerical experiments have been carried out in Daripa [10] #ith 120> and several
values ofF between 0 and 1. Daripa [10] (see also Vanden-Broeck [30]) has shown
a legitimate pointed bubble exists Bt= F¢ and that the Fourier modal amplitudes deca
monotonically only at this value df. (This bubble profile is shown later in Section 7).
Moreover, Daripa [10] has shown that ~ n~1° at large wavenumbers. Oscillations de-:
velop in the Fourier spectra of the solutions for valued~odway from this value (see
[10] for more details). It will be helpful to show this behavior in a graphical format d
vised by Daripa [10]. We show this in Fig. 4. Figure 4b is a magnified view of Fig. 4a
the transition region which shows a very small windowHnwith no oscillations in the
spectrum and the size of this window shrinks to zero With> oco. If the interval of this
window is (Fmin, Fmax), then a plot ofFqin vs % in Fig. 4c shows that the Fourier spectre
of bubbles away fron = 0.3784 will have persistent oscillationsas> co. Therefore, it
follows from our main result that there are no pointed bubbles for valuéss6fc. The
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FIG. 4. (a) Plots of fos (frequency of oscillations) of the Fourier coefficieatsys F for three different
choices of number of Fourier modéswhen6, =120; (b) magnified view of (a) in the sharp transition region;
(c) plot of minimum values of with no oscillations in the Fourier spectrum (&/N).

implications are that bubbles at thelS€if they exist) are either smooth or cusped bubble:
For more details, see [10].

6.2. Smooth Bubbles

Numerical experiments uségd= 180 and all discussions in this section are relevant onl
for this value of;. The solutions are divided into three different regimes below dependi
on the different qualitative properties of the numerical solutions.

6.2.1. Regime < F; =0.234 Accurate numerical solutions fdf < F; could be ob-
tained withN as little as 31. Values of the Fourier coefficients obtained \wtha 31 are
accurate up to six decimal places when compared with their values obtained witt21.
Some numerical results are depicted in Figs. 5 and 6.

Figure 5 shows some graphs taken from our computed solutiong=withr;. Figure 5a
depicts profiles of the bubbles generated with three different valulis ®he bubbles are
almost indistinguishable. Figure 5b depicts a magnified view of the regions near the a
These profiles agree with each other remarkably well even at this magnification. The
of these bubble profiles also agree very well with the theoretical estimate (5.1) as dep
in Fig. 5¢. Figure 5d shows a plot af vsn. Their amplitudes decay monotonically with
increasingn which is not recognizable for values of> 50 (approx.) in this graph.

Figure 6 shows plots of |a,| vs Inn for three values of~, 0.10, 0.20, and 0.234,
indicating thata, ~n~14 asn — oo, which is found to be independent Bffor F < F.

These and similar other calculations indicate that qualitative features of all the gray
shown in Figs5 and6 are generic for all solutions with K F;. Fourier modal amplitudes
|an| for all these solutions decay monotonically with decay rate-a—1* (approx) at
large n.

These bubbles are clearly smooth at the apex.
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FIG.5. Smooth bubble & = 0.234. (a) Convergence of the bubble profiles; (b) magnified view of the bubb
profiles near the tip; (c) comparison of theoretical and numerical shapes of the tails of the bubbles; (d) qualif
behavior of the Fourier spectrum.

6.2.2. Approximate regime;< F <0.30. We required higher values & to obtain
converged solutions for higher values 6f Thus, we could obtain solutions fér < 0.3
(approx.) withN = 121. Some representative solutions in this regime are shown in Figs
and 8.

Figure 7 shows various plots similar to the ones in Fig. 6 b&tat0.25, a slightly higher
value tharF;. Qualitative aspects of various graphs in this figure are similar to that in Fig

0.0 .
2.0 ¢
-4.0
-6.0
-8.0

-10.0 ‘ : =
0.0 2.0 4.0 6.0

Inn

—— Froude=0.1 .
- Froude=0.20
- Froude=0.234

In|a_n|

FIG. 6. Log—log plots of the Fourier spectrums of solutions obtained #ith 180 for three values of,
0.1, 0.2, and 0.234 wheN = 251. The straight line fit has a slope—1.4.
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FIG. 7. Smooth bubble & =0.25. (a) Convergence of the bubble profiles; (b) magnified view of the bubb
profiles near the tip; (c) comparison of theoretical and numerical shapes near the tails of the bbb ;
(d) qualitative behavior of the Fourier spectrum whéa= 251.

except for the graph in Fig. 7d. In this figure, oscillations in the Fourier spectrum are cle
visible in the beginning part of the spectrum. These oscillations quickly disappear anc
amplitude, thereafter, decreases monotonically.

Figure 8 depicts the plots of &, | vs Inn for three values of =0.236,0.27, and 0.29
whenN = 251. In these figures, oscillations are clearly recognizable whose amplitude
not differ by more than 16 when calculations wittN = 121 andN = 251 are compared
and, hence, are very accurate. These oscillations are not an effect of finite resolution
putation. Furthermore, our computations with various valuds gf251 lead us to believe
that Fourier coefficients of the solutions for these valueB &fill decay monotonically as
n— oo (see Section 6.2.4 for more details). For all these valu€s tie asymptotic decay
rate remains the same as that ok Fy, i.e.,a, ~ n~14, asn — oco. Therefore, it follows
from Proposition 1 and our main result that these are smooth bubbles.

Itis worthwhile to comment on the appearance of the oscillations as sdomxaeeds-;
whose amplitudes increase with increasifg— F1) as seen in this figure. This possibly ha:
to do with the complicated nature of the development of singularity of different order in-
complex velocity ag gradually increases towards the transition point where the transiti



134 PRABIR DARIPA

-2.0 T T

—— Froude=0.236

In|a_n|
.
»
o
r

Inn

—— Froude=0.27

In |a_n|
.
[*>]
o

-10.0

Inn

-2.0

-4.0 —— Froude = 0.29 R

-6.0

Inla_n|

-8.0

-10.0 . .
0.0 2.0 4.0 6.0

Inn

FIG. 8. Log—log plots of the Fourier spectrums of solutions obtained #ith 180 for three values of,
0.236, 0.27, and 0.29 wheh = 251.

from smooth to pointed topology takes place. This development process probably be
at F;. Since the complex velocity (see (2.2)) has a singularity of order 1 for the smo
bubbles and of order/3 for the pointed bubbles, the functigiio; 6;) in (2.2) has to have
very awkward dependence 6nso that it behaves according to (4.1) as the transition poi
is approached. Since the Taylor series of the logarithmic term in (4.1) has coefficients w
alternate in sign from odd to even mode, the Fourier spectra of the solutions for vakies
well before the transition point are likely to show signs of such oscillatory behavior, as is
case here. Itis speculated that this awkward dependence be§inarat its presence is felt
more strongly a$- gets closer to the transition point, justifying the nature of oscillatior
in Fig. 8 with increasing-. Of course, it will be desirable to have a suitable expansion
the functiong(o; 6;) in this regime which will reflect this kind of behavior. However, we
have not pursued this yet.

These and similar other calculations indicate that qualitative features of all the grar
shown in Figs7 and 8 are generic for all solutions with < F < 0.30 (approx.). Fourier
modal amplitudesa, | for all these solutions do not decay monotonically at low wavenur
bers. But at large wavenumbers, the oscillations disappear|agichas an approximate
asymptotic decay rate,a~n—14.
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6.2.3. Approximate regime £ 0.30. Some representative solutions obtained Wta:
251 in this regime are discussed next.

The series representation (2.3) becomes really inadequate for the fugetipand the
problem gradually becomes intractable as expected. Some scenarios are presented t

As F exceeds a value of 0.30, oscillations of very small amplitude of the order of rounc
error first develop at the far end of the Fourier spectrumEAt0.31, asp= —6.2 x 1074,
a00=—1.77x 107%, ay50=—9.7 x 102, and aygo= —6.6 x 10°. The Fourier coeffi-
cients are found to be of one sign for al|, n> 31 and the amplitude of oscillations is
of the order of 10°.

At F=0.33,a50=—-15x 1@3, a100=—-3.8 x 104, ais0=—1.67x 1(T4, anda200=
—9.4 x 10°°. The Fourier coefficients are found to be of one sign foaalln > 125, and
the amplitude of oscillations is of 5 10~° approximately. As we see, amplitude of thes
oscillations has increased a little bit but not much.

At F=0.34,a50=—-2.7 x 1073, a100=—8.3 x 1074, a;50=—4.0x 104, and Ao0=
—2.6 x 107, The Fourier coefficients now alternate in sign from even toroftd all n and
the amplitude of oscillations is almost of the order of 4@t n > 200. Notice that values
of the Fourier coefficients decrease slower now than for lower values of

We also computed withF =0.35 . The solutions are not reliable. The decay rate of tt
Fourier coefficients seriously deterioratesFat= 0.35. For exampleasg= —4.7 x 1073,
ajoo=—2.0 x 1073, a350= —1.38.0 x 102, andaygo= —1.26 x 102 atthisF. The Fourier
coefficients also alternate in sign from even to adar all n and the amplitude of oscillations
is almost of the order of 1@ for n > 250 which is relatively large compared to the Fourie
modal amplitudes at large wavenumbers.

Some solutions in this regime are shown later in Section 7.

Qualitative features of solutions for & 0.30 differ from that for F < F <0.30in two
respects: oscillations appear in the far end of the spectra in our computations with N u
251and the decay rate of the Fourier coefficients deteriorates with increasing F. Amplitt
of the oscillations increases with increasing F which possibly signifies the approach of
transition point.

6.2.4. Diagnosis. Next we characterize the topology at the tips of these bubbles.

Figure 9a displays the frequency of oscillations in the Fourier spectrum as a functio
F for three choices oN. The sudden emergence of oscillations in the Fourier spectri
is clearly visible as soon as exceeds a critical value d¥;. These oscillations first de-
velop in the the low-wavenumber modes and then propagate towards higher wavenu
modes with increasing- until the entire spectrum is enveloped with persistent oscill
tions at someN-dependent valu€o(N) whereF; < Fo(N) < Fc. For F € (Fo(N), Fo),
all modes patrticipate in this oscillatory behavior. It is worth mentioning here that freque
of oscillations, andhotthe number of oscillations, approaches zerdlas oo for F < Fc.
Actually, the number of oscillations at a fixédlincreases with increasiny for F > Fq,
which should be apparent from this figure.

Figure 9b shows a plot dfo(N) vs (1/N). This figure clearly suggests thig(N) will
approach a value above 0.33Ms— co. There is obviously some difficulty in predicting
the exact limit value from this figure because the linear extrapolation here will not wi
since the singularity appears to be very complicate& ascreases even further. It is my
speculation that the limiting value & because as we know from our previous section th
a singularity of a different order arisest= F¢ due to the existence of a pointed bubbile
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FIG. 9. (a) Plots of fos (frequency of oscillations) of the Fourier coefficieatsys F for three different
choices of number of Fourier modé (b) plot of minimum values of with alternating sign patterns in the
sequenceéa, — a,_;) against(1/N).

at this value ofF. This leads us to conclude that all bubbles in the regimeF < Fc are
probably smooth bubbles.
Below we show some computations for cusped bubbles, i.e. Gpt0.

6.3. Cusped Bubbles

Numerical experiments have been carried out wjth- 0 for three different values of
N: 31,121, and 251.

For F > F, (recall thatF, =0.8), computed values df,| obtained withN =31 are
accurate up to I® (when compared with their values obtained wih= 121) and decay
monotonically. For 8 < F < F,, computed values df,| obtained withN =121 are ac-
curate up to 10° (when compared with their values obtained wih= 251) but these do
not decay monotonically. Fourier spectra of the solutions develop oscillations which
not disappear with increasing and are not an effect of discretization. The Fourier coe
ficients of all these solutions have an asymptotic decayaaten—12 for all F > 0.4. For
F < 0.4, the oscillations appear more often and solutions are less reliabl@pgroaches
Fc whenN = 251. Calculations with higheN were not successful. Some fine details o
these solutions are depicted below.

Figure 10 shows some graphs taken from our computed solutidhs-& 4. Figure 10a
depicts profiles of the bubbles generated with three different valulis ©he bubbles are
almost indistinguishable. Figure 10b depicts a magnified view of the regions near the &
These profiles agree with each other remarkably well even at this magnification. The
of these bubble profiles also agree very well with the theoretical estimate (5.1) as dep
in Fig. 10c. Figure 10d shows the graph of the Fourier coefficiaptagainstn. Their
amplitudes decay with oscillations for small wavenumbers which is clearly recognize
for values ofn < 50 (approx) in this graph. At largg these oscillations do not appear anc
their amplitudes decay monotonically with
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FIG. 10. Cusped bubble witlr = 0.4. (a) Convergence of bubble profiles; (b) magnified view of the bubble
profiles near the tip; (c) comparison of theoretical and numerical shapes of the tails of the bubbles; (d) bel
of the Fourier coefficients.

Figure 11 depicts the plots of |m,| vs Inn for three values of: 0.4,0.6, and 0.7
whenN = 251. In these figures, the oscillations are clearly recognizable whose amplitt
appear to decrease with increasiffg — Fc). These oscillations do not appear at larg
wavenumbers. Moreover, these plots indicate #hat N~ asn — oo for all these values
of F. These and similar other calculations appear to suggest that qualitative features
the graphs shown in Figs. 10 and 11 are generic for all cusped bubbles obtained for v
of F in the interval (4, F,). For F > F,, the asymptotic decay rate remains the sam
i.e.,an~n~1% asn— oco. However, the oscillations in the Fourier spectrum complete
disappear for these values bf

Figure 12a displays the frequency of oscillations as a function of Froude number for ti
choices ofN. The sudden emergence of oscillations in the Fourier spectrum s clearly vis
for F < F,. These oscillations first develop in the low-wavenumber modes as soen a
decreases belof, and then propagate toward higher wavenumber modes with decré&asir
until the entire spectrum is enveloped with oscillations at sbivaependent valuEo(N)
where Fc < Fo(N) < F,. For F € (F¢, Fo(N)), all modes participate in this oscillatory
behavior. As before, itis the frequency of oscillations, aothe number of oscillations, that
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FIG. 11. Log-log plots of the Fourier spectrums of solutions obtained tith0° for three values of, 0.4,
0.5, and 0.7 wheN = 251. It shows a gradual decrease in the frequency of oscillation with an increase in Fro
number. The oscillations completely die awayFat- 0.8, not shown here.

approaches zero & — oco. The number of oscillations actually increases with increasir
N at a fixedF in this regime.

Figure 12b shows a plot dfo(N) vs (1/N). This figure clearly suggests thep(N)
very likely approache$c as N — co. This probably indicates that a singularity in the
complex velocity arises aF | Fc. We believe that all bubbles in the reginte> Fc
are cusped bubbles and the difficulty with reliable computation for valuds of the
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FIG. 12. (a) Plots of fos (frequency of oscillations) of the Fourier coefficieatsys F for three different
choices of number of Fourier modé (b) plot of minimum values of with alternating sign patterns in the
sequenceéa, — a,_1), against1/N).
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FIG. 13. Details near the tip for cusped profiles and the free boundaries=s.4, 0.6, 0.8, and 1.

immediate neighborhood dfc has to do with the very subtle transition from pointed t
cusped bubbles.

Figure 13 shows details of the tip for cusped profile$-a0.4, 0.6, 0.8, and 1.0. The
length, L, of the stem at the cusp gradually increases with increaSiagnd approaches
infinity as F — oo. Figure 14 shows a plot of In versusF for F > 0.4 and a magnified
view of this plot forF > 0.75. The symbo#® in this figure shows actual data points. The
data points fo= > 0.75 fit into the following equation within an error of 1%,

L=A€"F, (6.1)

whereA=0.6357 andn=0.351.

7. TOPOLOGY TRANSITION

The transition scenario from pointed to smooth (cusped) bubbl€sdecreases below
(increases abovdjc is a very subtle issue due to the possible complicated nature of
singularity alluded to in previous sections. This is reflected in numerical difficulties
values ofF close toFc.

Figure 15 shows the bubble profiles including the magnified view of the region n
the tip (see the right box in the figure) for several value§00.31, 0.33,F¢, 0.4. These
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04 05 06 07 08 09 0.75 080 085 090 095 1.00
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FIG. 14. TheInL vsF plot and its magnified view foF > 0.75.
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FIG. 15. Left, bubble profiles at four values &f, 0.31, 0.33, 0.35784, and 0.4. Right, the profiles near the ti
of these bubbles.

results were obtained with = 251. From this figure, the following scenario of topologica
transition atF = Fc emerges. A rounded nose of vanishing size appears at the tip as <
asF decreases below (increases abdwe)The radius of curvature of this nascent smoot
profile at the tip gradually increases with decreadi@and approaches infinity & — 0
which corresponds to a flat interface separating the heavy liquid from the gas). Similar
cusp of vanishing size appears at the tip as sodh esceedd-c.

It will be worthwhile to test the validity of the above transition scenario by a more suital
numerical method.

8. DISCUSSIONS AND CONCLUSIONS

In this paper, we have characterized the topology at the tip of the bubbles based o
limit behavior of the qualitative properties of the Fourier spectra of numerical solutions.
have presented a systematic study of the dependerfeeoaf); and have presented some
evidence which seems to indicate that the bubbles Wwith Fc are smooth, the bubbles
with F = F¢ are pointed, and the bubbles with> Fc are cusped.

Dueto the inadequacy of the series representation (2.3) for finding very accurate solu
in the immediate neighborhood of the transition péigtwe have used our main results, i.e.
the asymptotic properties of the qualitative behavior of the Fourier spectra of the soluti
It will be desirable to verify the numerical results presented here with results obtained u
another approach which can handle the complicated nature of the singularities allud
in this paper.

In this connection, an approach would be to consider the inclusion of singular terms
side the unit disk, i.e., outside the region of interest, for smooth but nearly pointed bub
and consider their dynamics in the complex plane as the paraf&earied. One or more
of such singularities will hit the unit disk exactly at the critical spdeg],where the smooth
bubble turns pointed. This approach for studying singularity formation in other moving f
boundary problems has been used by many researchers including Longuet-Higgins
Howisonet al.[16—18], Peterson [24], Tanveer [25], Balatral. [1] among many others.
However, use of this approach for determining the critical speefr this bubble problem
is still open and remains a topic of future research. Results obtained using this appr
can also serve to partially validate the numerical results presented here.
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In closing, we would like to make the following remarks.

o Atfirstsight, different limiting behaviors (4.1) and (4.2)rg appear quite awkward
and could be the source of numerical difficulties as we have noticed before. It will
desirable to have an asymptotic theory in the vicinity of the transition which will undoubte
require the technique of asymptotics beyond all orders [20, 25, 26, 5, 6]. This might :
give some insight into the nature of complexity of the singularity at the tip and may e
be able to provide more accurate numerical methods for this problem.

e It is worth mentioning here that the surface tension acts as a destabilizing forc
this problem because the zero surface tension limit bubble has a speed dfleseQ®34
which is much (more than 50%) lower than the spdegl=0.35784, of the fastest zero
surface tension bubble.

e We should note that Garabedian [13] used only the first four terms of a uniforr
valid asymptotic expansion of the flow and obtained a lower bound of the fastest sj
to be equal to 0.2363. Perhaps, with more accurate calculations without neglectinc
many terms in the asymptotic expansion one could obtain the speed of the fastest sn
bubble close to the one obtained here. It may also be worth investigating this approa
Garabedian.
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