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The problem of a plane bubble rising in a 2-D tube is revisited using Birkhoff’s for-
mulation developed in 1957. The equations in this formulation have a one parameter
(Froude numberF) family of solutions which are divided into three regimes char-
acterized by distinct topologies at the apex. These equations are solved numerically
using a conventional series representation method and Newton’s iterations. This nu-
merical method fails for values ofF in a range which contains the transition points. In
this paper, it is demonstrated through careful numerical computations how and why
this method fails. We also analyze the series and provide estimates of the transition
points. This strategy of estimating the transition points can be used for some problems
where the conventional series representation method fails because it does not ade-
quately account for changes in the nature of the singularity that takes place as these
transition points are approached in the parameter space. Furthermore, existence of
two new critical Froude numbers is demonstrated numerically. We further show that
the previous results on this problem have been incomplete by leaving out the char-
acterization of the topology at the apex of the bubbles for values ofF in the regime
0.234< F < 0.3578. We also resolve this issue in this paper.c© 2000 Academic Press

1. INTRODUCTION

The planar interface between a heavy and a light fluid under gravitational acceleration is
known to be an equilibrium configuration of fluid flow equations. This interface is known
to be unstable (stable) if an accelerating force, such as gravity, is directed from the heavy
(light) fluid to the light (heavy) fluid. This instability is known as the Rayleigh–Taylor (RT)
instability, and it plays an important role in many practical situations including inertial
confinement fusion, astrophysical jets, two phase flows and fluidized bed. One of the many
possible asymptotic scenarios in the late stages of RT instability is the steady state motion of
a periodic array of bubbles [11, 27]. A useful model to capture some essential features of this
scenario is an infinitely long plane bubble rising in a gravity field through an incompressible
and inviscid fluid. The bubble profile is symmetric about the centerline of the channel and
approaches the channel walls asymptotically at far downstream.
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This problem is mathematically characterized by two parameters: (i) the included angle,
θt , at the apex of the bubble; and (ii) the dimensionless speed,F =U/

√
gh (Froude number)

whereU is the actual speed of the bubble,g is the gravity andh is the width of the two-
dimensional tube. Admissible values ofθt according to the theory are 180◦, 120◦, and 0◦ cor-
responding to smooth, pointed, and cusped bubbles, respectively [9, 13, 28, 30]. Below, we
will encounter three critical values of Froude numbers:F1= 0.234, FC= 0.3578, F2= 0.8.
The relevance of these speeds will be made clear.

Due to the awkward nonlinearity of the problem, a combination of asymptotic analyses
and numerical computation [2–4, 10, 13, 28, 30] has been used in the past to address the
question of admissible values of speed of these bubbles. Most of the early numerical works
have been based on conformal mapping and the series expansion method [4, 30]. Later,
similar calculations have been carried out using the real-space boundary integral approach
[7, 19]. Most of the numerical results obtained by these methods have been found to be
consistent with each other.

The theoretical and numerical works of Birkhoff and Carter [4] and the theoretical work
of Garabedian [13] in the late fifties suggest that there is a continuum family of smooth
bubbles rising at a speed ofF ≤ Fs, whereFs refers to the speed of the fastest smooth
bubble. Approximate asymptotic analysis of Garabedian [13] puts the estimate of this
speedF at an approximate value of 0.24. More recent computations [8, 28] which use
conformal-mapping and the Fourier collocation method have provided numerical evidence
to the fact that a bubble with a stagnation point at its tip can rise at any speedF ≤ FC.
Since these bubbles could be smooth or pointed, Garabedian [14] conjectured that these
bubbles for values ofF > F1 are probably pointed bubbles. Later numerical calculations
of Vanden-Broeck [30] and Daripa [10] obtained a pointed bubble only atF = FC. There
are no well-documented data regarding the nature of the topology at the apex for bubbles
in the approximate regimeF1< F < FC. It has been speculated that these bubbles may as
well be legitimate pointed bubbles [14, 15]. Thus it appears that a careful study is required
to properly characterize solutions in the regime:F1< F < FC. To this end, we would like
to mention that these observations are also consistent with numerical results obtained using
the real space boundary integral approach [7, 19].

In this paper,

• we investigate the topology of the bubbles in the regimeF1< F < FC and charac-
terize these bubbles as smooth bubbles;
• we sketch a transition scenario from smooth to pointed and pointed to cusped bubbles

and attribute certain numerical difficulties to the delicate nature of the singularity in the
complex velocity at the tip and the transition phenomenology;
• one of the numerical observations made during our computations with a specific

series representation of the solution is the existence of a threshold phenomenon, i.e., swift
emergence of oscillations in the Fourier spectra of the numerical solutions as soon as the
Froude number exceeds a threshold value ofF1 for smooth bubbles and decreases below
a threshold value ofF2 for cusped bubbles. The possible source of this phenomenon is
discussed and relevance of these Froude numbers is indicated;
• our research provides a general idea that is viable for some problems in which

conventional series representation methods fail in computing approximate values of the
transition points where topology changes occur.
• we provide some interesting results for cusped bubbles.
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The paper is laid out as follows. In Section 2, we briefly review the formulation of
the problem. We discuss some relevant theoretical and computational issues in Section 3.
Issues of topological transition are addressed in Section 4. In Section 5 we provide some
validation criteria. Numerical results that are necessary for our purposes mentioned above
are presented in Section 6. A sketch of topological transition is suggested in Section 7.
Finally we conclude and discuss some open problems in Section 8.

2. PRELIMINARIES

The formulation of the problem and the numerical approach have been discussed in
Daripa [10] and are almost identical to Birkhoff and Carter [4] and Vanden-Broeck [28].
Analysis to be presented in Section 3 and discussion of the results to be presented in later
sections require that we present a very brief outline of the formulation and the numerical
method here.

With respect to the reference frame attached to the bubble, the fluid upstream in a tube
of width h has a speedU downward. With appropriate normalization (speed byU and
time by( h

U )), far upstream (i.e.,x→−∞) q= 1, θ = 0, whereq is the speed andθ is the
flow direction. The apex of the bubble is located atx= y= 0. It is useful to deal with this
problem in an auxiliary circle plane,|σ | ≤1, which is obtained by a conformal mapping of
the potential plane image of the flow in the physical plane. This maps the bubble surface
onto the upper semi-circleσ = eiα, α ∈ [0, π ], the walls on (−1, 1) and the flow domain
onto the interior of the domain bounded by the upper semi-circle and the real axis. The
image of the apex of the bubble isσ = i and that of the tail of the bubble isσ =∓1.

The complex functionτ = ν− i θ , whereν= ln q, is an analytic function ofσ within
the semi-circle and satisfies the symmetry conditionτ(σ )= τ̄ (−σ̄ ) due to symmetry of the
bubble surface about the centerline of the tube (see Fig. 1). In the above, an overbar denotes
complex conjugacy. Moreover, sinceτ(σ ) is continuous and real on the real axis (sinceθ = 0
on real axis, the image of the walls), it also satisfies the conditionτ(σ )= τ̄ (σ̄ ), in |σ | ≤ 1,
by Schwartz reflection principle. As discussed in detail by Birkhoff [2–4], the asymptotic
behavior ofτ at the tail(σ =∓1) and the apex(σ = i ) of the bubble are given by

eτ ≈ [−ln C(1− σ 2)]1/3, asσ →∓1; eτ ≈ (1+ σ 2)γ , asσ → i, (2.1)

whereγ = θt/π ≥ 0 with θt as the included angle of the bubble at the apex.
An appropriate representation ofτ(σ ) in |σ | ≤1 which satisfies all the above conditions

is then given by

eτ(σ ) = (1+ σ 2)γ [−ln C(1− σ 2)]1/3[−ln C]−1/3eg(σ ;θt ), (2.2)

with

g(σ ; θt ) =
∞∑

n=1

an(θt )σ
2n, (2.3)

where 0<C< 0.5 and the Fourier coefficients,an, are real. Since the values of these Fourier
coefficients depend on the value ofθt , we have explicitly shown this here using the notation
an(θt ). Explicit dependence of these coefficients onF is suppressed from this notation. A
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FIG. 1. (a) The physical region: a bubble is rising upward in the fluid with speedU . The diameter of the tube
is h; (b) The circle plane is|σ | ≤1.

derivative form of the Bernoulli’s equation on the bubble interface in this circle plane is
given by [9]

π tanαe2ν dν

dα
+ e−ν

F2
cosθ = 0, 0≤ α < π

2
. (2.4)

In the Fourier collocation method [28], expressions forν, θ , and their derivatives from
(2.2) are substituted in (2.4). This gives an equation containingF , γ , and an infinite number
of Fourier coefficientsan. In order to solve it numerically, only a finite number of Fourier
coefficients are retained and Eq. (2.4) is applied atN equi-spaced points:αI = (π/2N)(I −
1/2), I = 1, . . . , N. This gives a system ofN number of nonlinear equations. Ifγ is
prescribed, then the Fourier series is truncated afterN terms and the equations are solved by
Newton’s iterations forN number of unknown Fourier coefficients. Ifγ is not prescribed,
then the Fourier series is truncated afterN− 1 terms and the equations are solved by
Newton’s iterations forγ andN− 1 number of unknown Fourier coefficients. Numerical
convergence for a choice ofN is achieved if the values of the unknowns do not change more
than 10−8 between two successive Newton iterations. Once this is solved, values ofq andθ
at mesh points are obtained from (2.2). Numerical solutions are obtained in this fashion for
an increasing sequence of values ofN to test for convergence of theN unknown Fourier
coefficients and of the bubble profiles generated from integrating the equation

zα = −cotα

πq
ei θ , 0≤ α ≤ π, (2.5)

wherez= x+ iy.
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The series representation (2.2) is not unique. For example, consider the following which
is similar to the one used by Vanden-Broeck [28],

eτ(σ ) = [−ln C(1− σ 2)]1/3[−ln C]−1/3(1+ h(σ ; θt )). (2.6)

This representation works well for finding bubbles with or without stagnation point
(see [28]). Since the flow directionθ is discontinuous at a stagnation point, computed val-
ues ofθ using series representation (2.3) forh in (2.6) will have poor accuracy, in particular
near the stagnation point, due to Gibbs’ phenomenon. Therefore, conclusions about the
topology at the apex based on direct estimate of the apex angleθt from these computed
values may be misleading.

The advantage of using (2.2) as opposed to using (2.6) lies in the ability to detect presence
or absence of pointed bubbles and smooth bubbles. We discuss this in Sections 3 and 4.

Remark 1. The end points (i.e., the tail and the tip of the bubble) cannot be used as
collocation points because the variableν= ln q in (2.4) diverges at these points.

Remark 2. Since the collocation points closest to the end points approach these points
as N→∞ and ν diverges there, the numerical solutions can be reliable only up to a
certain maximum value ofN. In fact, the scheme will fail for very large values ofN
because the variableν and entries in the derivative matrix required during Newton’s iteration
would be large and may cause quantities of interest during computation to underflow or
overflow. Therefore convergence of the scheme cannot be tested in the strict sense under grid
refinement and such a conclusion has to be drawn from calculations for modest values ofN.

3. THEORETICAL AND COMPUTATIONAL ISSUES

A numerical procedure for finding all possible solutions is to use the above scheme for
a sequence of positive valuesF > 0 with allowable values ofθt in (2.2). As discussed
in Daripa [9], these allowable values ofθt are 180◦, 120◦, and 0◦. Various works in the
literature [4, 10, 13, 28, 30] suggest that there is only one value,θa, of θt corresponding to
eachF . Numerical solutions with prescribed values ofθt andF which are not consistent
(i.e., θt 6= θa) may appear reasonable at times unless Fourier spectra of the solutions are
carefully scrutinized as discussed below.

If computations useθt 6= θa, then the functiong(σ ; θt ) in (2.2) will diverge logarithmi-
cally at the stagnation point and the series (2.3) for this function will converge only for
|σ | ≤1, σ 6=∓i . To be precise, we have from (2.2)

g(σ ; θt ) = g(σ ; θa)+ ε ln(1+ σ 2); |σ | ≤ 1, (3.1)

whereε= (θa− θt )/π . The Taylor series ofg(σ, θt )will now converge only for|σ | ≤1, σ 6=
∓i , because of the logarithmic branch point atσ = i . The Taylor series

ln(1+ σ 2) =
∞∑

n=1

(−1)n+1

n
σ 2n, (3.2)

for the logarithmic term in (3.1) converges slowly, in fact very slowly, at points in the
neighborhood ofσ =∓i,∓1 and also atσ =∓1. Because of this and the two previous
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remarks made in Section 2, it is possible to obtain numerical solutions with modest values
of N even ifθt 6= θa (see Daripa [9]). In that case, the numerically generated bubble will have
neither the correct apex angle,θa, due to Gibbs’ phenomenon nor the prescribed angleθt .

However, such spurious solutions can be detected by carefully analyzing the series (2.3)
for g(σ ; θt ) given by (3.1). Since the spurious solutions are associated with the presence
of logarithmic singularities on the unit circle (see Eq. (3.1)), it would seem appropriate to
identify such solutions by analyzing the pattern of signs in the series which are determined
by the singularities on the radius of convergence. For example, the pattern of signs in the
series (3.2) is alternating due to the presence of singularities atσ 2=−1. When the pattern
of signs is alternating or fixed, Cauchy’s ratio test is the most useful in the graphical form
devised by Domb and Sykes [12] to determine the radius of convergence and, in some
instances, also the nature of the singularities. Van-Dyke [31] gives a lucid account with
many examples of how the pattern of signs in the series is determined by the singularities.

For some series, the final pattern of signs determined by the singularity may appear after
only a few terms and for others, it may appear after many terms. In the latter case, the
singularity may not be detected easily unless enough terms in the series are available. This
is illustrated by

(1+ ε)p = 1+ pε + p(p− 1)

2
ε2+ p(p− 1)(p− 2)

6
ε3+ · · · , (3.3)

wherep> 0 is not an integer. The larger the value ofp, the larger would be the number of
terms after which the pattern of signs determined by the singularity appears. An example
which is more relevant to the current problem is illustrated by

ln(1+ x) =
∞∑

n=1

(−1)n+1

n
xn, (3.4)

where the pattern of signs determined by the singularity on the radius of convergence appears
right from the beginning of the series. On the other hand, the series

∑∞
n=1(x

n/np), p> 1,
converges for all|x| ≤1. Now consider the series

S(x) =
∞∑

n=1

xn

np
+ ε

∞∑
n=1

(−1)n+1

n
xn =

∞∑
n=1

(
1

np
+ ε (−1)n+1

n

)
xn, (3.5)

which converges for−1< x≤ 1 and has a singularity atx=−1. Analysis of this series for
S(x) is more subtle because the pattern of signs determined by the singularity atx=−1
may not appear soon enough unlessε in (3.5) is not very small. For example, the pattern
of alternating signs that was present right from the beginning in the series for ln(1+ x) in
(3.4) appears in the modified series (3.5) only after (1/ε p−1) number of terms which is very
large for small values ofε (rememberp> 1). However, this modified series (3.5) displays a
pattern of oscillations starting from the first few terms precisely due to this same singularity
on the circle of convergence.

Therefore, analysis of the series forg(σ, θt ) is more subtle because the pattern of signs
determined by the singularities in (3.1) may not appear early in the series for small values
of ε. The spurious solutions, however, can be determined by the presence of oscillations in
the Fourier spectrum which signals the presence of singularities on the unit circle. This is
discussed in the next section in the context of the bubble problem.
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3.1. Analysis of the Series

Equations (3.1) and (3.2) imply that nonzero values of(θt − θa) should change the behav-
ior of the series (2.3) in a way that is consistent with the series (3.2). It is evident from (3.2)
that this will leave a qualitative imprint on the Fourier spectra of the numerical solutions.
To be precise, it follows from (2.3), (3.1), and (3.2) that the series coefficientsan(θt ) an(θa)

are related by

an(θt ) = an(θa)+ ε (−1)n+1

n
, n = 1, . . . ,∞. (3.6)

Sinceg(σ, θa) is bounded and continuous on the unit circle, the most conservative estimate
of the asymptotic behavior ofan(θa) is given by

an(θa) = o

(
1

n

)
, asn→∞. (3.7)

Therefore Eq. (3.6) becomes

an(θt ) ∼ ε (−1)n+1

n
, asn→∞, (3.8)

indicating that amplitudes of the coefficientsan(θt ) for a choice ofθt 6= θa will alternate in
sign from odd to evenn and will slowly decay to zero asn→∞. However, in practice the
series is truncated which has the following implications for our purposes here. If

an(θa) ∼ Kn−p, asn→∞, (3.9)

with K > 0 andp greater than but close to one (p appears to be in the range 1.3≤ p≤ 1.4 for
most of the bubble solutions), then it follows from (3.6) thatan(θt ) for choices ofθt 6= θa will
decay with oscillations at large wavenumbers but may not alternate in sign (from odd to even
n) unlessε is not very small. In other words, persistent oscillations in the Fourier spectra
asn→∞ and slow decay rate according to Eq. (3.8) are the only important indicators of
spurious solutions. Moreover, Eq. (3.6) suggests that such oscillations will appear in the
entire Fourier spectruman(θt ) if an(θa) decays monotonically withn. It is perhaps useful
at this point to exemplify these observations.

It is well established [4, 10, 13, 28, 30] that a smooth bubble exists whenF = 0.23 and
a pointed bubble exists atF = 0.3578. We show some results with these values ofF .

Figure 2 shows some graphs taken from our computed solutions atF = 0.23 and two
different values ofθt : 180◦, 178◦. Figure 2a depicts surface profiles (only the left half) of
these numerically generated bubbles for these two values ofθt andF = 0.23. These profiles
near the tails are indistinguishable and satisfy the asymptotic shape of these bubbles near
the tails. Figure 2b depicts a magnified view of the regions around the tips of the bubbles
in Fig. 2a. It is reasonable to conclude from the thousandfold magnification of they axis
in this plot that these profiles agree exceedingly well. The Fourier modal amplitudes decay
monotonically whenθt = 180◦. This is shown in Fig. 2c. Figure 2d shows the magnitude of
Fourier coefficients against the wavenumber whenθt = 178◦. The Fourier modal amplitudes
in this case are initially (up to fifth wavenumber) large compared to the Fourier coefficients
of the logarithmic term (see (3.2)) and, hence, the beginning part of the spectrum (up to fifth
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FIG. 2. Effect of small variation in the apex angle withF = 0.23 andN= 121: (a) Comparison of bubble
shapes; (b) magnified view of the bubble profiles near the tip; (c) Fourier coefficients withθt = 180◦; (d) Fourier
coefficients withθt = 178◦.

wavenumber) does not have any oscillations. Thereafter, oscillations in the Fourier spectrum
are clearly visible in the plot because the transients introduced by the logarithmic branch
point now dominate the spectrum. Amplitude of these oscillations decreases with increasing
wavenumber and is too small to be detected visually for high wavenumbers in this plot.

Figure 3 shows results of numerical experiments forF = 0.35784 and two different values
of θt : 120◦, 118◦. In Figs. 3c and 3d, smooth (monotonic) and oscillatory Fourier spectra
are clearly recognizable, a clear indication that the oscillations arise becauseθt does not
correspond to the correct value 120◦. The amplitude of oscillations in both the figures is
very mild becauseε ( 2∗π

180 = 0.0349) is very small (see (3.8)). We have found that amplitude
of such oscillations in the Fourier spectrum increases with|θa− θt | (i.e., the difference
between the correct tip angle and the specified value ofθt used during computations) which
is consistent with our analysis above.

The analysis and calculations presented above lead us to surmise that persistence of
oscillations in the Fourier spectrum as n→∞ may indicate that the value ofθt used for
computation is not the correct apex angle of the bubble solution at that value of F. It is
worth pointing out that this conclusion does not follow if one uses representation(2.6)
instead of(2.2).
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FIG. 3. Effect of variation in the apex angle withF = 0.35784 andN= 121. (a) Comparison of bubble shapes;
(b) magnified view of the bubble profiles near the tip; (c) Fourier spectrum whenθt = 120◦; (d) Fourier spectrum
whenθt = 118◦.

We measure the extent of such oscillations by monitoring the number of times the plot of
an versusn changes trend (from decrease to increase or decrease to increase) as a fraction of
the total number of Fourier coefficients used in the calculation. For lack of a better name, we
call this ratio the frequency of oscillations and use the abbreviation fos for it occasionally.
We should note from our discussion so far in this section that the limiting (asN→∞)
value of this ratio fos should be one if there indeed is a logarithmic singularity (however
weak, i.e., regardless of how small theε is in Eq. (3.1)) on the radius of convergence of
the series. Since presence of this singularity is synonymous with spurious solutions, such
solutions can be determined by estimating the limiting values of fos. We will show below
that this test is most useful in a graphical format to detect such spurious solutions.

4. TOPOLOGICAL TRANSITION AND SINGULARITIES

It is not difficult to see from (2.2) that behavior of the functiong(σ ; θt ) in the neighborhood
of the tip has to be very complicated so that the complex velocity develops singularity of the
right order as the topological transition (smooth to pointed and pointed to cusped bubbles)
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takes place at certain values ofF . In particular, if there are smooth bubbles forF < Fl ,
pointed bubbles forFl ≤ F ≤ Fu, and cusped bubbles forF > Fu, then it follows from (2.2)
that

g(σ ;π)→−1

3
ln(1+ σ 2)+ g

(
σ ; 2π

3

)
, asF ↑ Fl, (4.1)

and

g(σ ; 0)→−2

3
ln(1+ σ 2)+ g

(
σ ; 2π

3

)
, asF ↓ Fu, (4.2)

whereg(σ ;π), g(σ ; 2π/3), andg(σ ; 0) are all bounded functions in|σ | ≤1. Below we
provide numerical results which indicate thatFl = Fu= FC. This means that the function
g(σ ; θt ) has to develop logarithmic branch points of different order at the tip of the pointed
bubble depending on whether the pointed bubble is approached from below or aboveFC.
Therefore, behavior of the functiong(σ ; θt ) has to be complicated for values ofF close to
Fl andFu which are not adequately accounted for in (2.3).

5. DIAGNOSTIC TOOLS

5.1. Asymptotic Shape

The asymptotic shape of the bubble interface for largex downstream is given by (see [28])

x = F2/2(1− 2y)2. (5.1)

5.2. Tip Angle

It follows from Section 2 that the tip angleθa is related to the flow variablesθ andq and
their derivatives at the tip by the relations

θ(β = 0+) = −θa

2
(5.2)

and

πF2

3
= (q3)ββ |β→0= cos

(
θa

2

)
. (5.3)

Above we have usedβ = π
2 −α and, hence,β = 0 corresponds to the tip of the bubble.

Equation (5.2) is very obvious and can be viewed as the definition of the tip angle. The
relation (5.3) arises from rewriting the interface condition (2.4) at the tip of the bubble and
has been discussed in some detail in Daripa [9].

Use of the relations (5.2) and (5.3) is very limited here and, in fact, should not be used
for validation purposes because it is difficult to accurately compute the values on the left
hand sides of these equations. It is worth mentioning here the numerical method does not
even use the apex as a collocation point. We have also verified our contention in known
cases and found that these relations should not be used for purposes of validating whether
numerical solutions have the prescribed values of the apex angle or not. Instead, we should
use our main result given in the next section.
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5.3. Properties of the Fourier Spectrum

From our discussion in Section 3 and well known facts from the literature on Fourier
series [32], we state the following two propositions in relation to numerical solutions with
representation (2.2).

PROPOSITION1. If θt used in computation is the correct angle at the tip, thenan∼ o(1/n)
as n→∞.

PROPOSITION2. A sufficient condition for the emergence of oscillations in the Fourier
spectrum of a solution at a given F as n→∞ is that the value ofθt used for computation
be different from the correct tip-angleθa.

Below we refer to the following as our main result which follows from Proposition 2.
Absence of persistent oscillations in the values of an at large n as n→∞ indicates that
the corresponding solution is the correct solution, i.e., the apex angle of the solution at that
value of F must be the value ofθt used for computation.

Our main result can be used to validate that a numeral solution at a certain value ofF
has an apex angle equal to the value ofθt used for computation. For this, it is necessary to
scrutinize the qualitative asymptotic behavior of the Fourier spectra asN→∞. As we will
see in Section 6, this is to be inferred here from observing the trend in the behavior of the
Fourier spectra of the solutions obtained from using a sequence of modest values ofN.

6. NUMERICAL RESULTS

Numerical experiments have been carried out with several values ofN up to 251 for
various values ofF in the regime 0< F ≤ 1. For brevity, numerical results will be presented
for one or more of the following values ofN: 31, 121, and 251.

We have made some numerical observations which are discussed below. Some of the cru-
cial inferences for values ofF in a certain regime have to be drawn in the limitN→∞ from
numerical results. Since numerics are rarely mathematical proofs, it would seem desirable
to assemble some relevant numerical results in one place where these might be more acces-
sible to other investigators for comparison with solutions obtained by other numerical and
analytical methods. With this in mind, we have depicted some of our numerical results below.

6.1. Pointed Bubbles

Numerical experiments have been carried out in Daripa [10] withθt = 120◦ and several
values ofF between 0 and 1. Daripa [10] (see also Vanden-Broeck [30]) has shown that
a legitimate pointed bubble exists atF = FC and that the Fourier modal amplitudes decay
monotonically only at this value ofF . (This bubble profile is shown later in Section 7).
Moreover, Daripa [10] has shown thatan∼ n−1.35 at large wavenumbers. Oscillations de-
velop in the Fourier spectra of the solutions for values ofF away from this value (see
[10] for more details). It will be helpful to show this behavior in a graphical format de-
vised by Daripa [10]. We show this in Fig. 4. Figure 4b is a magnified view of Fig. 4a in
the transition region which shows a very small window inF with no oscillations in the
spectrum and the size of this window shrinks to zero withN→∞. If the interval of this
window is(Fmin, Fmax), then a plot ofFmin vs 1

N in Fig. 4c shows that the Fourier spectra
of bubbles away fromF = 0.3784 will have persistent oscillations asn→∞. Therefore, it
follows from our main result that there are no pointed bubbles for values ofF 6= FC. The
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FIG. 4. (a) Plots of fos (frequency of oscillations) of the Fourier coefficients,an vs F for three different
choices of number of Fourier modesN whenθt = 120◦; (b) magnified view of (a) in the sharp transition region;
(c) plot of minimum values ofF with no oscillations in the Fourier spectrum vs(1/N).

implications are that bubbles at theseF (if they exist) are either smooth or cusped bubbles.
For more details, see [10].

6.2. Smooth Bubbles

Numerical experiments usedθt = 180◦ and all discussions in this section are relevant only
for this value ofθt . The solutions are divided into three different regimes below depending
on the different qualitative properties of the numerical solutions.

6.2.1. Regime F≤ F1= 0.234. Accurate numerical solutions forF ≤ F1 could be ob-
tained withN as little as 31. Values of the Fourier coefficients obtained withN= 31 are
accurate up to six decimal places when compared with their values obtained withN= 121.
Some numerical results are depicted in Figs. 5 and 6.

Figure 5 shows some graphs taken from our computed solutions withF = F1. Figure 5a
depicts profiles of the bubbles generated with three different values ofN. The bubbles are
almost indistinguishable. Figure 5b depicts a magnified view of the regions near the apex.
These profiles agree with each other remarkably well even at this magnification. The tails
of these bubble profiles also agree very well with the theoretical estimate (5.1) as depicted
in Fig. 5c. Figure 5d shows a plot ofan vs n. Their amplitudes decay monotonically with
increasingn which is not recognizable for values ofn> 50 (approx.) in this graph.

Figure 6 shows plots of ln|an| vs lnn for three values ofF , 0.10, 0.20, and 0.234,
indicating thatan∼ n−1.4 asn→∞, which is found to be independent ofF for F < F1.

These and similar other calculations indicate that qualitative features of all the graphs
shown in Figs.5 and6 are generic for all solutions with F≤ F1. Fourier modal amplitudes
|an| for all these solutions decay monotonically with decay rate an∼ n−1.4 (approx.) at
large n.

These bubbles are clearly smooth at the apex.



132 PRABIR DARIPA

FIG. 5. Smooth bubble atF = 0.234. (a) Convergence of the bubble profiles; (b) magnified view of the bubble
profiles near the tip; (c) comparison of theoretical and numerical shapes of the tails of the bubbles; (d) qualitative
behavior of the Fourier spectrum.

6.2.2. Approximate regime F1< F ≤ 0.30. We required higher values ofN to obtain
converged solutions for higher values ofF . Thus, we could obtain solutions forF ≤ 0.3
(approx.) withN= 121. Some representative solutions in this regime are shown in Figs. 7
and 8.

Figure 7 shows various plots similar to the ones in Fig. 6 but atF = 0.25, a slightly higher
value thanF1. Qualitative aspects of various graphs in this figure are similar to that in Fig. 6

FIG. 6. Log–log plots of the Fourier spectrums of solutions obtained withθt = 180◦ for three values ofF ,
0.1, 0.2, and 0.234 whenN= 251. The straight line fit has a slope'−1.4.
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FIG. 7. Smooth bubble atF = 0.25. (a) Convergence of the bubble profiles; (b) magnified view of the bubble
profiles near the tip; (c) comparison of theoretical and numerical shapes near the tails of the bubbles,N= 251;
(d) qualitative behavior of the Fourier spectrum whenN= 251.

except for the graph in Fig. 7d. In this figure, oscillations in the Fourier spectrum are clearly
visible in the beginning part of the spectrum. These oscillations quickly disappear and the
amplitude, thereafter, decreases monotonically.

Figure 8 depicts the plots of ln|an| vs lnn for three values ofF = 0.236, 0.27, and 0.29
whenN= 251. In these figures, oscillations are clearly recognizable whose amplitudes do
not differ by more than 10−5 when calculations withN= 121 andN= 251 are compared
and, hence, are very accurate. These oscillations are not an effect of finite resolution com-
putation. Furthermore, our computations with various values ofN ≤ 251 lead us to believe
that Fourier coefficients of the solutions for these values ofF will decay monotonically as
n→∞ (see Section 6.2.4 for more details). For all these values ofF , the asymptotic decay
rate remains the same as that forF < F1, i.e.,an∼ n−1.4, asn→∞. Therefore, it follows
from Proposition 1 and our main result that these are smooth bubbles.

It is worthwhile to comment on the appearance of the oscillations as soon asF exceedsF1

whose amplitudes increase with increasing(F − F1) as seen in this figure. This possibly has
to do with the complicated nature of the development of singularity of different order in the
complex velocity asF gradually increases towards the transition point where the transition
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FIG. 8. Log–log plots of the Fourier spectrums of solutions obtained withθt = 180◦ for three values ofF ,
0.236, 0.27, and 0.29 whenN= 251.

from smooth to pointed topology takes place. This development process probably begins
at F1. Since the complex velocity (see (2.2)) has a singularity of order 1 for the smooth
bubbles and of order 2/3 for the pointed bubbles, the functiong(σ ; θt ) in (2.2) has to have
very awkward dependence onF so that it behaves according to (4.1) as the transition point
is approached. Since the Taylor series of the logarithmic term in (4.1) has coefficients which
alternate in sign from odd to even mode, the Fourier spectra of the solutions for values ofF
well before the transition point are likely to show signs of such oscillatory behavior, as is the
case here. It is speculated that this awkward dependence begins atF1 and its presence is felt
more strongly asF gets closer to the transition point, justifying the nature of oscillations
in Fig. 8 with increasingF . Of course, it will be desirable to have a suitable expansion of
the functiong(σ ; θt ) in this regime which will reflect this kind of behavior. However, we
have not pursued this yet.

These and similar other calculations indicate that qualitative features of all the graphs
shown in Figs.7 and8 are generic for all solutions with F1< F < 0.30 (approx.). Fourier
modal amplitudes|an| for all these solutions do not decay monotonically at low wavenum-
bers. But at large wavenumbers, the oscillations disappear and|an| has an approximate
asymptotic decay rate an∼ n−1.4.
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6.2.3. Approximate regime F> 0.30. Some representative solutions obtained withN=
251 in this regime are discussed next.

The series representation (2.3) becomes really inadequate for the functiong(σ ) and the
problem gradually becomes intractable as expected. Some scenarios are presented below.

As F exceeds a value of 0.30, oscillations of very small amplitude of the order of roundoff
error first develop at the far end of the Fourier spectrum. AtF = 0.31,a50=−6.2× 10−4,
a100=−1.77× 10−4, a150=−9.7× 10−5, and a200=−6.6× 10−5. The Fourier coeffi-
cients are found to be of one sign for allan, n> 31 and the amplitude of oscillations is
of the order of 10−7.

At F = 0.33, a50=−1.5× 10−3, a100=−3.8× 10−4, a150=−1.67× 10−4, anda200=
−9.4× 10−5. The Fourier coefficients are found to be of one sign for allan, n> 125, and
the amplitude of oscillations is of 5× 10−5 approximately. As we see, amplitude of these
oscillations has increased a little bit but not much.

At F = 0.34, a50=−2.7× 10−3, a100=−8.3× 10−4, a150=−4.0× 10−4, anda200=
−2.6× 10−4. The Fourier coefficients now alternate in sign from even to oddn for all n and
the amplitude of oscillations is almost of the order of 10−4 at n> 200. Notice that values
of the Fourier coefficients decrease slower now than for lower values ofF .

We also computed withF = 0.35 . The solutions are not reliable. The decay rate of the
Fourier coefficients seriously deteriorates atF = 0.35. For example,a50=−4.7× 10−3,
a100=−2.0× 10−3,a150=−1.38.0× 10−3, anda200=−1.26× 10−3 at thisF . The Fourier
coefficients also alternate in sign from even to oddn for all nand the amplitude of oscillations
is almost of the order of 10−4 for n> 250 which is relatively large compared to the Fourier
modal amplitudes at large wavenumbers.

Some solutions in this regime are shown later in Section 7.
Qualitative features of solutions for F> 0.30 differ from that for F1< F < 0.30 in two

respects: oscillations appear in the far end of the spectra in our computations with N up to
251and the decay rate of the Fourier coefficients deteriorates with increasing F. Amplitude
of the oscillations increases with increasing F which possibly signifies the approach of the
transition point.

6.2.4. Diagnosis. Next we characterize the topology at the tips of these bubbles.
Figure 9a displays the frequency of oscillations in the Fourier spectrum as a function of

F for three choices ofN. The sudden emergence of oscillations in the Fourier spectrum
is clearly visible as soon asF exceeds a critical value ofF1. These oscillations first de-
velop in the the low-wavenumber modes and then propagate towards higher wavenumber
modes with increasingF until the entire spectrum is enveloped with persistent oscilla-
tions at someN-dependent valueFO(N) whereF1< FO(N)< FC. For F ∈ (FO(N), FC),
all modes participate in this oscillatory behavior. It is worth mentioning here that frequency
of oscillations, andnot the number of oscillations, approaches zero asN→∞ for F < FC.
Actually, the number of oscillations at a fixedF increases with increasingN for F > F1,
which should be apparent from this figure.

Figure 9b shows a plot ofFO(N) vs (1/N). This figure clearly suggests thatFO(N) will
approach a value above 0.33 asN→∞. There is obviously some difficulty in predicting
the exact limit value from this figure because the linear extrapolation here will not work
since the singularity appears to be very complicated asF increases even further. It is my
speculation that the limiting value isFC because as we know from our previous section that
a singularity of a different order arises atF = FC due to the existence of a pointed bubble
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FIG. 9. (a) Plots of fos (frequency of oscillations) of the Fourier coefficients,an vs F for three different
choices of number of Fourier modesN; (b) plot of minimum values ofF with alternating sign patterns in the
sequence(an−an−1) against(1/N).

at this value ofF . This leads us to conclude that all bubbles in the regime0< F < FC are
probably smooth bubbles.

Below we show some computations for cusped bubbles, i.e., withθt = 0.

6.3. Cusped Bubbles

Numerical experiments have been carried out withθt = 0 for three different values of
N: 31,121, and 251.

For F > F2 (recall thatF2= 0.8), computed values of|an| obtained withN= 31 are
accurate up to 10−6 (when compared with their values obtained withN= 121) and decay
monotonically. For 0.4< F < F2, computed values of|an| obtained withN= 121 are ac-
curate up to 10−5 (when compared with their values obtained withN= 251) but these do
not decay monotonically. Fourier spectra of the solutions develop oscillations which do
not disappear with increasingN and are not an effect of discretization. The Fourier coef-
ficients of all these solutions have an asymptotic decay ratean∼ n−1.3 for all F > 0.4. For
F < 0.4, the oscillations appear more often and solutions are less reliable asF approaches
FC when N= 251. Calculations with higherN were not successful. Some fine details of
these solutions are depicted below.

Figure 10 shows some graphs taken from our computed solutions atF = 0.4. Figure 10a
depicts profiles of the bubbles generated with three different values ofN. The bubbles are
almost indistinguishable. Figure 10b depicts a magnified view of the regions near the apex.
These profiles agree with each other remarkably well even at this magnification. The tails
of these bubble profiles also agree very well with the theoretical estimate (5.1) as depicted
in Fig. 10c. Figure 10d shows the graph of the Fourier coefficientsan againstn. Their
amplitudes decay with oscillations for small wavenumbers which is clearly recognizable
for values ofn< 50 (approx) in this graph. At largen, these oscillations do not appear and
their amplitudes decay monotonically withn.
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FIG. 10. Cusped bubble withF = 0.4. (a) Convergence of bubble profiles; (b) magnified view of the bubbles
profiles near the tip; (c) comparison of theoretical and numerical shapes of the tails of the bubbles; (d) behavior
of the Fourier coefficients.

Figure 11 depicts the plots of ln|an| vs lnn for three values ofF : 0.4, 0.6, and 0.7
whenN= 251. In these figures, the oscillations are clearly recognizable whose amplitudes
appear to decrease with increasing(F − FC). These oscillations do not appear at large
wavenumbers. Moreover, these plots indicate thatan∼ n−1.3 asn→∞ for all these values
of F . These and similar other calculations appear to suggest that qualitative features of all
the graphs shown in Figs. 10 and 11 are generic for all cusped bubbles obtained for values
of F in the interval (0.4, F2). For F > F2, the asymptotic decay rate remains the same,
i.e., an∼ n−1.3 asn→∞. However, the oscillations in the Fourier spectrum completely
disappear for these values ofF .

Figure 12a displays the frequency of oscillations as a function of Froude number for three
choices ofN. The sudden emergence of oscillations in the Fourier spectrum is clearly visible
for F < F2. These oscillations first develop in the low-wavenumber modes as soon asF
decreases belowF2 and then propagate toward higher wavenumber modes with decreasingF
until the entire spectrum is enveloped with oscillations at someN-dependent valueFO(N)
where FC< FO(N)< F2. For F ∈ (FC, FO(N)), all modes participate in this oscillatory
behavior. As before, it is the frequency of oscillations, andnotthe number of oscillations, that
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FIG. 11. Log–log plots of the Fourier spectrums of solutions obtained withθt = 0◦ for three values ofF , 0.4,
0.5, and 0.7 whenN= 251. It shows a gradual decrease in the frequency of oscillation with an increase in Froude
number. The oscillations completely die away atF ∼ 0.8, not shown here.

approaches zero asN→∞. The number of oscillations actually increases with increasing
N at a fixedF in this regime.

Figure 12b shows a plot ofFO(N) vs (1/N). This figure clearly suggests thatFO(N)
very likely approachesFC as N→∞. This probably indicates that a singularity in the
complex velocity arises asF ↓ FC. We believe that all bubbles in the regimeF > FC

are cusped bubbles and the difficulty with reliable computation for values ofF in the

FIG. 12. (a) Plots of fos (frequency of oscillations) of the Fourier coefficients,an vs F for three different
choices of number of Fourier modesN; (b) plot of minimum values ofF with alternating sign patterns in the
sequence(an−an−1), against(1/N).
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FIG. 13. Details near the tip for cusped profiles and the free boundaries atF = 0.4, 0.6, 0.8, and 1.

immediate neighborhood ofFC has to do with the very subtle transition from pointed to
cusped bubbles.

Figure 13 shows details of the tip for cusped profiles atF : 0.4, 0.6, 0.8, and 1.0. The
length,L, of the stem at the cusp gradually increases with increasingF and approaches
infinity as F→∞. Figure 14 shows a plot of lnL versusF for F > 0.4 and a magnified
view of this plot forF > 0.75. The symbold in this figure shows actual data points. The
data points forF > 0.75 fit into the following equation within an error of 1%,

L = A emF, (6.1)

whereA= 0.6357 andm= 0.351.

7. TOPOLOGY TRANSITION

The transition scenario from pointed to smooth (cusped) bubbles asF decreases below
(increases above)FC is a very subtle issue due to the possible complicated nature of the
singularity alluded to in previous sections. This is reflected in numerical difficulties for
values ofF close toFC.

Figure 15 shows the bubble profiles including the magnified view of the region near
the tip (see the right box in the figure) for several values ofF : 0.31, 0.33,FC, 0.4. These

FIG. 14. The lnL vs F plot and its magnified view forF > 0.75.
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FIG. 15. Left, bubble profiles at four values ofF , 0.31, 0.33, 0.35784, and 0.4. Right, the profiles near the tip
of these bubbles.

results were obtained withN= 251. From this figure, the following scenario of topological
transition atF = FC emerges. A rounded nose of vanishing size appears at the tip as soon
asF decreases below (increases above)FC. The radius of curvature of this nascent smooth
profile at the tip gradually increases with decreasingF (and approaches infinity asF→ 0
which corresponds to a flat interface separating the heavy liquid from the gas). Similarly, a
cusp of vanishing size appears at the tip as soon asF exceedsFC.

It will be worthwhile to test the validity of the above transition scenario by a more suitable
numerical method.

8. DISCUSSIONS AND CONCLUSIONS

In this paper, we have characterized the topology at the tip of the bubbles based on the
limit behavior of the qualitative properties of the Fourier spectra of numerical solutions. We
have presented a systematic study of the dependence ofF on θt and have presented some
evidence which seems to indicate that the bubbles withF < FC are smooth, the bubbles
with F = FC are pointed, and the bubbles withF > FC are cusped.

Due to the inadequacy of the series representation (2.3) for finding very accurate solutions
in the immediate neighborhood of the transition pointFC, we have used our main results, i.e.,
the asymptotic properties of the qualitative behavior of the Fourier spectra of the solutions.
It will be desirable to verify the numerical results presented here with results obtained using
another approach which can handle the complicated nature of the singularities alluded to
in this paper.

In this connection, an approach would be to consider the inclusion of singular terms out-
side the unit disk, i.e., outside the region of interest, for smooth but nearly pointed bubbles
and consider their dynamics in the complex plane as the parameterF is varied. One or more
of such singularities will hit the unit disk exactly at the critical speed,FC, where the smooth
bubble turns pointed. This approach for studying singularity formation in other moving free
boundary problems has been used by many researchers including Longuet-Higgins [21],
Howisonet al. [16–18], Peterson [24], Tanveer [25], Bakeret al. [1] among many others.
However, use of this approach for determining the critical speedFC for this bubble problem
is still open and remains a topic of future research. Results obtained using this approach
can also serve to partially validate the numerical results presented here.
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In closing, we would like to make the following remarks.

• At first sight, different limiting behaviors (4.1) and (4.2) atFC appear quite awkward
and could be the source of numerical difficulties as we have noticed before. It will be
desirable to have an asymptotic theory in the vicinity of the transition which will undoubtedly
require the technique of asymptotics beyond all orders [20, 25, 26, 5, 6]. This might also
give some insight into the nature of complexity of the singularity at the tip and may even
be able to provide more accurate numerical methods for this problem.
• It is worth mentioning here that the surface tension acts as a destabilizing force in

this problem because the zero surface tension limit bubble has a speed close toF1= 0.234
which is much (more than 50%) lower than the speed,FC= 0.35784, of the fastest zero
surface tension bubble.
• We should note that Garabedian [13] used only the first four terms of a uniformly

valid asymptotic expansion of the flow and obtained a lower bound of the fastest speed
to be equal to 0.2363. Perhaps, with more accurate calculations without neglecting too
many terms in the asymptotic expansion one could obtain the speed of the fastest smooth
bubble close to the one obtained here. It may also be worth investigating this approach of
Garabedian.
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